92 research outputs found

    Comparison of different model solutions to simulate membrane fouling in the ultrafiltration of a secondary effluent from a municipal wastewater treatment plant

    Full text link
    The quality of the secondary treatment effluent (STE) from a municipal wastewater treatment plant (MWWTP) is not good enough for some applications such as agriculture. Membrane ultrafiltration (UF) has been proven to be a reliable tertiary treatment to achieve the needed water quality. The productivity of the UF processes depends on the membrane fouling. The aim of this work is to prepare a model wastewater that could mimic the fouling trend of a STE wastewater from a MWWTP. Several model wastewaters consisting of different proteins and carbohydrates were used in the UF experiments. UF was also performed with a STE. The membrane used in the UF tests was a UFCM5 from Norit X-flow® hydrophilic polyethersulfone/polyvinylpyrrolidone blend hollow-fiber UF membrane of 200 KDa molecular weight cut-off with a fiber diameter of 1.5 mm. Membrane configuration was inside-out. UF tests with model wastewater and STE wastewater were compared. The results showed that the best model wastewater, which represents the fouling trend of STE wastewater is the model wastewater whose composition is 15 mg/l of bovine serum albumin and 5.5 mg/l of dextran.The authors of this work wish to gratefully acknowledge the financial support from the Generalitat Valenciana through the program "Ayudas para la realizacion de proyectos I+D para grupos de investigacion emergentes GV/2013."Tora Grau, M.; Soler Cabezas, JL.; Vincent Vela, MC.; Mendoza Roca, JA.; Martínez Francisco, FJ. (2014). Comparison of different model solutions to simulate membrane fouling in the ultrafiltration of a secondary effluent from a municipal wastewater treatment plant. Desalination and Water Treatment. 1-7. https://doi.org/10.1080/19443994.2014.939865S17Delgado, S., Dı́az, F., Vera, L., Dı́az, R., & Elmaleh, S. (2004). Modelling hollow-fibre ultrafiltration of biologically treated wastewater with and without gas sparging. Journal of Membrane Science, 228(1), 55-63. doi:10.1016/j.memsci.2003.09.011Qin, J.-J., Oo, M. H., Lee, H., & Kolkman, R. (2004). Dead-end ultrafiltration for pretreatment of RO in reclamation of municipal wastewater effluent. Journal of Membrane Science, 243(1-2), 107-113. doi:10.1016/j.memsci.2004.06.010Konieczny, K. (1998). Disinfection of surface and ground waters with polymeric ultrafiltration membranes. Desalination, 119(1-3), 251-258. doi:10.1016/s0011-9164(98)00166-0Madaeni, S. S., Fane, A. G., & Grohmann, G. S. (1995). Virus removal from water and wastewater using membranes. Journal of Membrane Science, 102, 65-75. doi:10.1016/0376-7388(94)00252-tArnal Arnal, J. M., Sancho Fernández, M., Martín Verdú, G., & Lora García, J. (2001). Design of a membrane facility for water potabilization and its application to Third World countries. Desalination, 137(1-3), 63-69. doi:10.1016/s0011-9164(01)00205-3Arévalo, J., Garralón, G., Plaza, F., Moreno, B., Pérez, J., & Gómez, M. Á. (2009). Wastewater reuse after treatment by tertiary ultrafiltration and a membrane bioreactor (MBR): a comparative study. Desalination, 243(1-3), 32-41. doi:10.1016/j.desal.2008.04.013Katsoufidou, K., Yiantsios, S. G., & Karabelas, A. J. (2008). An experimental study of UF membrane fouling by humic acid and sodium alginate solutions: the effect of backwashing on flux recovery. Desalination, 220(1-3), 214-227. doi:10.1016/j.desal.2007.02.038Muthukumaran, S., Nguyen, D. A., & Baskaran, K. (2011). Performance evaluation of different ultrafiltration membranes for the reclamation and reuse of secondary effluent. Desalination, 279(1-3), 383-389. doi:10.1016/j.desal.2011.06.040Henderson, R. K., Subhi, N., Antony, A., Khan, S. J., Murphy, K. R., Leslie, G. L., … Le-Clech, P. (2011). Evaluation of effluent organic matter fouling in ultrafiltration treatment using advanced organic characterisation techniques. Journal of Membrane Science, 382(1-2), 50-59. doi:10.1016/j.memsci.2011.07.041Fan, L., Nguyen, T., Roddick, F. A., & Harris, J. L. (2008). Low-pressure membrane filtration of secondary effluent in water reuse: Pre-treatment for fouling reduction. Journal of Membrane Science, 320(1-2), 135-142. doi:10.1016/j.memsci.2008.03.058Xiao, D., Li, W., Chou, S., Wang, R., & Tang, C. Y. (2012). A modeling investigation on optimizing the design of forward osmosis hollow fiber modules. Journal of Membrane Science, 392-393, 76-87. doi:10.1016/j.memsci.2011.12.006Kaya, Y., Barlas, H., & Arayici, S. (2011). Evaluation of fouling mechanisms in the nanofiltration of solutions with high anionic and nonionic surfactant contents using a resistance-in-series model. Journal of Membrane Science, 367(1-2), 45-54. doi:10.1016/j.memsci.2010.10.037Yu, C.-H., Fang, L.-C., Lateef, S. K., Wu, C.-H., & Lin, C.-F. (2010). Enzymatic treatment for controlling irreversible membrane fouling in cross-flow humic acid-fed ultrafiltration. Journal of Hazardous Materials, 177(1-3), 1153-1158. doi:10.1016/j.jhazmat.2010.01.022Gao, W., Liang, H., Ma, J., Han, M., Chen, Z., Han, Z., & Li, G. (2011). Membrane fouling control in ultrafiltration technology for drinking water production: A review. Desalination, 272(1-3), 1-8. doi:10.1016/j.desal.2011.01.051Amin Saad, M. (2004). Early discovery of RO membrane fouling and real-time monitoring of plant performance for optimizing cost of water. Desalination, 165, 183-191. doi:10.1016/j.desal.2004.06.021Jayalakshmi, A., Rajesh, S., & Mohan, D. (2012). Fouling propensity and separation efficiency of epoxidated polyethersulfone incorporated cellulose acetate ultrafiltration membrane in the retention of proteins. Applied Surface Science, 258(24), 9770-9781. doi:10.1016/j.apsusc.2012.06.028Qu, F., Liang, H., Wang, Z., Wang, H., Yu, H., & Li, G. (2012). Ultrafiltration membrane fouling by extracellular organic matters (EOM) of Microcystis aeruginosa in stationary phase: Influences of interfacial characteristics of foulants and fouling mechanisms. Water Research, 46(5), 1490-1500. doi:10.1016/j.watres.2011.11.051Wang, C., Li, Q., Tang, H., Yan, D., Zhou, W., Xing, J., & Wan, Y. (2012). Membrane fouling mechanism in ultrafiltration of succinic acid fermentation broth. Bioresource Technology, 116, 366-371. doi:10.1016/j.biortech.2012.03.099Nataraj, S., Schomäcker, R., Kraume, M., Mishra, I. M., & Drews, A. (2008). Analyses of polysaccharide fouling mechanisms during crossflow membrane filtration. Journal of Membrane Science, 308(1-2), 152-161. doi:10.1016/j.memsci.2007.09.060Zator, M., Ferrando, M., López, F., & Güell, C. (2007). Membrane fouling characterization by confocal microscopy during filtration of BSA/dextran mixtures. Journal of Membrane Science, 301(1-2), 57-66. doi:10.1016/j.memsci.2007.05.038Xiao, K., Wang, X., Huang, X., Waite, T. D., & Wen, X. (2009). Analysis of polysaccharide, protein and humic acid retention by microfiltration membranes using Thomas’ dynamic adsorption model. Journal of Membrane Science, 342(1-2), 22-34. doi:10.1016/j.memsci.2009.06.016Nigam, M. O., Bansal, B., & Chen, X. D. (2008). Fouling and cleaning of whey protein concentrate fouled ultrafiltration membranes. Desalination, 218(1-3), 313-322. doi:10.1016/j.desal.2007.02.027MOUROUZIDISMOUROUZIS, S., & KARABELAS, A. (2006). Whey protein fouling of microfiltration ceramic membranes—Pressure effects. Journal of Membrane Science, 282(1-2), 124-132. doi:10.1016/j.memsci.2006.05.012Carić, M. Đ., Milanović, S. D., Krstić, D. M., & Tekić, M. N. (2000). Fouling of inorganic membranes by adsorption of whey proteins. Journal of Membrane Science, 165(1), 83-88. doi:10.1016/s0376-7388(99)00221-5Tasselli, F., Cassano, A., & Drioli, E. (2007). Ultrafiltration of kiwifruit juice using modified poly(ether ether ketone) hollow fibre membranes. Separation and Purification Technology, 57(1), 94-102. doi:10.1016/j.seppur.2007.03.007Hao, Y., Moriya, A., Maruyama, T., Ohmukai, Y., & Matsuyama, H. (2011). Effect of metal ions on humic acid fouling of hollow fiber ultrafiltration membrane. Journal of Membrane Science, 376(1-2), 247-253. doi:10.1016/j.memsci.2011.04.035Marcos, B., Moresoli, C., Skorepova, J., & Vaughan, B. (2009). CFD modeling of a transient hollow fiber ultrafiltration system for protein concentration. Journal of Membrane Science, 337(1-2), 136-144. doi:10.1016/j.memsci.2009.03.036Chung, T.-S., Qin, J.-J., & Gu, J. (2000). Effect of shear rate within the spinneret on morphology, separation performance and mechanical properties of ultrafiltration polyethersulfone hollow fiber membranes. Chemical Engineering Science, 55(6), 1077-1091. doi:10.1016/s0009-2509(99)00371-1Nguyen, T.-A., Yoshikawa, S., Karasu, K., & Ookawara, S. (2012). A simple combination model for filtrate flux in cross-flow ultrafiltration of protein suspension. Journal of Membrane Science, 403-404, 84-93. doi:10.1016/j.memsci.2012.02.026Domínguez Chabaliná, L., Rodríguez Pastor, M., & Rico, D. P. (2013). Characterization of soluble and bound EPS obtained from 2 submerged membrane bioreactors by 3D-EEM and HPSEC. Talanta, 115, 706-712. doi:10.1016/j.talanta.2013.05.062Viebke, C. (2000). Determination of molecular mass distribution of κ-carrageenan and xanthan using asymmetrical flow field-flow fractionation. Food Hydrocolloids, 14(3), 265-270. doi:10.1016/s0268-005x(99)00066-1Kelly, S. T., & Zydney, A. L. (1995). Mechanisms for BSA fouling during microfiltration. Journal of Membrane Science, 107(1-2), 115-127. doi:10.1016/0376-7388(95)00108-oHwang, K.-J., & Sz, P.-Y. (2011). Membrane fouling mechanism and concentration effect in cross-flow microfiltration of BSA/dextran mixtures. Chemical Engineering Journal, 166(2), 669-677. doi:10.1016/j.cej.2010.11.04

    Study of the influence of operational conditions and hollow-fiber diameter on the ultrafiltration performance of a secondary treatment effluent

    Full text link
    Secondary treatment effluents from municipal wastewater treatment plants (MWWTP) must achieve high water quality standards for their reuse in agriculture. To achieve these standards, ultrafiltration (UF) process, which is economically feasible, is carried out. However, UF has a drawback, membrane fouling, which causes operating difficulties and an increment of the operating cost. In order to minimize this phenomenon, it is important to determine the best operational conditions. Wastewater samples provided by MWWTP have a lot of variability in their composition due to factors such as temperature, efficiency of the secondary treatment, etc. Besides, the soluble microbial products of the secondary effluent are dependent on the type of the biological treatment implemented and its operating conditions. A model wastewater feed solution was prepared consisting of 15 mg/L of bovine serum albumin and 5.5 mg/L of dextran. In this research, UF tests were performed with the optimal simulated wastewater using two membranes UFCM5 Norit X-flow® hollow-fiber: one of them with a fiber diameter of 1.5 mm and the other one with a fiber diameter of 0.8 mm. The operational conditions, which influence membrane fouling, were varied in the range of 62 100 kPa for transmembrane pressure (TMP) and in the range of 0.8 1.2 m/s for cross-flow velocity (CFV). The best operational conditions were selected in terms of higher permeate flux. The highest permeate flux was obtained for the membrane of 0.8 mm and the lower energy consumption was achieved at a CFV of 1.2 m/s and a TMP of 62 kPa.Torà Grau, M.; Soler Cabezas, JL.; Vincent Vela, MC.; Mendoza Roca, JA.; Martínez Francisco, FJ. (2015). Study of the influence of operational conditions and hollow-fiber diameter on the ultrafiltration performance of a secondary treatment effluent. Desalination and Water Treatment. 1-7. doi:10.1080/19443994.2015.1118887S1

    Ultrafiltration fouling trend simulation of a municipal wastewater treatment plant effluent with model wastewater

    Full text link
    Secondary treatment effluents from Municipal Wastewater Treatment Plants require tertiary treatments to be reused in agriculture. Among tertiary treatment technologies, ultrafiltration has been proven to be a reliable reclamation process. Nevertheless this technique has an important disadvantage: membrane fouling. This phenomenon causes decline in permeate flux with time and increases the operational costs. Due to the fact that secondary effluents from Municipal Wastewater Treatment Plants contain a large amount of different compounds and that there is certain variability in their composition, the use of a simplified model wastewater consisting of only few compounds may help to simulate better the ultrafiltration fouling trend. The main secondary treatment effluent components responsible for fouling membrane during ultrafiltration tests are extracellular polymeric substances. These substances are mainly composed of proteins and polysaccharides, thus they are commonly used to prepare model wastewaters. This work consisted in two parts. Firstly, a model wastewater was selected among different model solutions mimicking secondary treatment effluent. Secondly, ultrafiltration behaviour of the selected model solution was compared with the behaviour of the secondary effluent in the ultrafiltration tests at different cross-flow velocities and transmembrane pressures. The membrane used in the ultrafiltration tests was UFCM5 Norit X-flow® hollow-fiber. To prepare model wastewaters, three parameters (proteins and carbohydrates concentrations and chemical oxygen demand) were considered. The model wastewater that represented the best the fouling trend of the secondary treatment effluent had a composition of 15 mg/l of bovine serum albumin and 5.5 mg/l of dextranThe authors wish to gratefully acknowledge the financial support of the Generalitat Valenciana through the project "Ayudas para la realizacion de proyectos I+D para grupos de investigacion emergentes GV/2013."Tora Grau, M.; Soler Cabezas, JL.; Vincent Vela, MC.; Mendoza Roca, JA.; Martínez Francisco, FJ. (2015). Ultrafiltration fouling trend simulation of a municipal wastewater treatment plant effluent with model wastewater. Desalination and Water Treatment. 1-9. doi:10.1080/19443994.2014.999714S19Qin, J.-J., Oo, M. H., Lee, H., & Kolkman, R. (2004). Dead-end ultrafiltration for pretreatment of RO in reclamation of municipal wastewater effluent. Journal of Membrane Science, 243(1-2), 107-113. doi:10.1016/j.memsci.2004.06.010Arévalo, J., Garralón, G., Plaza, F., Moreno, B., Pérez, J., & Gómez, M. Á. (2009). Wastewater reuse after treatment by tertiary ultrafiltration and a membrane bioreactor (MBR): a comparative study. Desalination, 243(1-3), 32-41. doi:10.1016/j.desal.2008.04.013Katsoufidou, K., Yiantsios, S. G., & Karabelas, A. J. (2008). An experimental study of UF membrane fouling by humic acid and sodium alginate solutions: the effect of backwashing on flux recovery. Desalination, 220(1-3), 214-227. doi:10.1016/j.desal.2007.02.038Muthukumaran, S., Nguyen, D. A., & Baskaran, K. (2011). Performance evaluation of different ultrafiltration membranes for the reclamation and reuse of secondary effluent. Desalination, 279(1-3), 383-389. doi:10.1016/j.desal.2011.06.040Henderson, R. K., Subhi, N., Antony, A., Khan, S. J., Murphy, K. R., Leslie, G. L., … Le-Clech, P. (2011). Evaluation of effluent organic matter fouling in ultrafiltration treatment using advanced organic characterisation techniques. Journal of Membrane Science, 382(1-2), 50-59. doi:10.1016/j.memsci.2011.07.041Muthukumaran, S., Jegatheesan, J. V., & Baskaran, K. (2013). Comparison of fouling mechanisms in low-pressure membrane (MF/UF) filtration of secondary effluent. Desalination and Water Treatment, 52(4-6), 650-662. doi:10.1080/19443994.2013.826324Yu, C.-H., Fang, L.-C., Lateef, S. K., Wu, C.-H., & Lin, C.-F. (2010). Enzymatic treatment for controlling irreversible membrane fouling in cross-flow humic acid-fed ultrafiltration. Journal of Hazardous Materials, 177(1-3), 1153-1158. doi:10.1016/j.jhazmat.2010.01.022Gao, W., Liang, H., Ma, J., Han, M., Chen, Z., Han, Z., & Li, G. (2011). Membrane fouling control in ultrafiltration technology for drinking water production: A review. Desalination, 272(1-3), 1-8. doi:10.1016/j.desal.2011.01.051Kaya, Y., Barlas, H., & Arayici, S. (2011). Evaluation of fouling mechanisms in the nanofiltration of solutions with high anionic and nonionic surfactant contents using a resistance-in-series model. Journal of Membrane Science, 367(1-2), 45-54. doi:10.1016/j.memsci.2010.10.037Delgado, S., Dı́az, F., Vera, L., Dı́az, R., & Elmaleh, S. (2004). Modelling hollow-fibre ultrafiltration of biologically treated wastewater with and without gas sparging. Journal of Membrane Science, 228(1), 55-63. doi:10.1016/j.memsci.2003.09.011Fan, L., Nguyen, T., Roddick, F. A., & Harris, J. L. (2008). Low-pressure membrane filtration of secondary effluent in water reuse: Pre-treatment for fouling reduction. Journal of Membrane Science, 320(1-2), 135-142. doi:10.1016/j.memsci.2008.03.058Xiao, D., Li, W., Chou, S., Wang, R., & Tang, C. Y. (2012). A modeling investigation on optimizing the design of forward osmosis hollow fiber modules. Journal of Membrane Science, 392-393, 76-87. doi:10.1016/j.memsci.2011.12.006Zator, M., Ferrando, M., López, F., & Güell, C. (2007). Membrane fouling characterization by confocal microscopy during filtration of BSA/dextran mixtures. Journal of Membrane Science, 301(1-2), 57-66. doi:10.1016/j.memsci.2007.05.038Nataraj, S., Schomäcker, R., Kraume, M., Mishra, I. M., & Drews, A. (2008). Analyses of polysaccharide fouling mechanisms during crossflow membrane filtration. Journal of Membrane Science, 308(1-2), 152-161. doi:10.1016/j.memsci.2007.09.060Nguyen, S. T., & Roddick, F. A. (2011). Chemical cleaning of ultrafiltration membrane fouled by an activated sludge effluent. Desalination and Water Treatment, 34(1-3), 94-99. doi:10.5004/dwt.2011.2790Xiao, K., Wang, X., Huang, X., Waite, T. D., & Wen, X. (2009). Analysis of polysaccharide, protein and humic acid retention by microfiltration membranes using Thomas’ dynamic adsorption model. Journal of Membrane Science, 342(1-2), 22-34. doi:10.1016/j.memsci.2009.06.016Hwang, K.-J., & Chiang, Y.-C. (2014). Comparisons of membrane fouling and separation efficiency in protein/polysaccharide cross-flow microfiltration using membranes with different morphologies. Separation and Purification Technology, 125, 74-82. doi:10.1016/j.seppur.2014.01.041Yamamura, H., Okimoto, K., Kimura, K., & Watanabe, Y. (2014). Hydrophilic fraction of natural organic matter causing irreversible fouling of microfiltration and ultrafiltration membranes. Water Research, 54, 123-136. doi:10.1016/j.watres.2014.01.024Nigam, M. O., Bansal, B., & Chen, X. D. (2008). Fouling and cleaning of whey protein concentrate fouled ultrafiltration membranes. Desalination, 218(1-3), 313-322. doi:10.1016/j.desal.2007.02.027MOUROUZIDISMOUROUZIS, S., & KARABELAS, A. (2006). Whey protein fouling of microfiltration ceramic membranes—Pressure effects. Journal of Membrane Science, 282(1-2), 124-132. doi:10.1016/j.memsci.2006.05.012Carić, M. Đ., Milanović, S. D., Krstić, D. M., & Tekić, M. N. (2000). Fouling of inorganic membranes by adsorption of whey proteins. Journal of Membrane Science, 165(1), 83-88. doi:10.1016/s0376-7388(99)00221-5Tasselli, F., Cassano, A., & Drioli, E. (2007). Ultrafiltration of kiwifruit juice using modified poly(ether ether ketone) hollow fibre membranes. Separation and Purification Technology, 57(1), 94-102. doi:10.1016/j.seppur.2007.03.007Vincent-Vela, M.-C., Álvarez-Blanco, S., Lora-García, J., & Bergantiños-Rodríguez, E. (2009). Estimation of the gel layer concentration in ultrafiltration: Comparison of different methods. Desalination and Water Treatment, 3(1-3), 157-161. doi:10.5004/dwt.2009.454Valiño, V., San Román, M. F., Ibáñez, R., Benito, J. M., Escudero, I., & Ortiz, I. (2014). Accurate determination of key surface properties that determine the efficient separation of bovine milk BSA and LF proteins. Separation and Purification Technology, 135, 145-157. doi:10.1016/j.seppur.2014.07.051Luck, P. J., Vardhanabhuti, B., Yong, Y. H., Laundon, T., Barbano, D. M., & Foegeding, E. A. (2013). Comparison of functional properties of 34% and 80% whey protein and milk serum protein concentrates. Journal of Dairy Science, 96(9), 5522-5531. doi:10.3168/jds.2013-6617Marcos, B., Moresoli, C., Skorepova, J., & Vaughan, B. (2009). CFD modeling of a transient hollow fiber ultrafiltration system for protein concentration. Journal of Membrane Science, 337(1-2), 136-144. doi:10.1016/j.memsci.2009.03.036Chung, T.-S., Qin, J.-J., & Gu, J. (2000). Effect of shear rate within the spinneret on morphology, separation performance and mechanical properties of ultrafiltration polyethersulfone hollow fiber membranes. Chemical Engineering Science, 55(6), 1077-1091. doi:10.1016/s0009-2509(99)00371-1Salahi, A., Mohammadi, T., Rahmat Pour, A., & Rekabdar, F. (2009). Oily wastewater treatment using ultrafiltration. Desalination and Water Treatment, 6(1-3), 289-298. doi:10.5004/dwt.2009.480Janssen, A. N., van Agtmaal, J., van den Broek, W. B. P., de Koning, J., Menkveld, H. W. H., Schrotter, J.-C., … van der Graaf, J. H. J. M. (2008). Monitoring of SUR to control and enhance the performance of dead-end ultrafiltration installations treating wwtp effluent. Desalination, 231(1-3), 99-107. doi:10.1016/j.desal.2007.10.024Torà-Grau, M., Soler-Cabezas, J. L., Vincent-Vela, M. C., Mendoza-Roca, J. A., & Martínez-Francisco, F. J. (2014). Comparison of different model solutions to simulate membrane fouling in the ultrafiltration of a secondary effluent from a municipal wastewater treatment plant. Desalination and Water Treatment, 1-7. doi:10.1080/19443994.2014.93986

    Ultrafiltration of municipal wastewater: study on fouling models and fouling mechanisms

    Full text link
    Ultrafiltration (UF) with hollow fiber membranes is a proven membrane technique that can achieve high water quality standards as a tertiary treatment in municipal wastewater treatment plants. However, UF has a major drawback, membrane fouling, which causes losses of productivity and increases operation costs. Thus, the aim of this work is to model membrane fouling in the UF of a secondary treatment effluent. The tests were carried out with a model wastewater solution that consisted of bovine serum albumin and dextran. Three different transmembrane pressures and three different crossflow velocities were tested. Several fouling models available in the literature, and new models proposed, were fitted to permeate flux decline experimental data. The models studied by other authors and considered in this study were: Hermia s models (complete, intermediate, standard pore blocking and gel layer) and Belfort s model. The new models proposed in this work were: modified Belfort s model, quadratic exponential model, logarithmic inversed model, double exponential model and tangent inversed model. The fitting accuracy of the models was determined in terms of the R-squared and standard deviation. The results showed that the model that had the higher fitting accuracy was the logarithmic inversed model. Among the Hermia s models, the model that had the higher fitting accuracy was the intermediate pore blocking model. Therefore, the predominant fouling mechanism was determined and it was the intermediate pore blocking modelThe authors wish to gratefully acknowledge the financial support of the Generalitat Valenciana through the project "Ayudas para la realizacion de proyectos I+D para grupos de investigacion emergentes GV/2013".Soler Cabezas, JL.; Tora Grau, M.; Vincent Vela, MC.; Mendoza Roca, JA.; Martínez Francisco, FJ. (2014). Ultrafiltration of municipal wastewater: study on fouling models and fouling mechanisms. Desalination and Water Treatment. 1-11. doi:10.1080/19443994.2014.969320S111Gadani, V., Irwin, R., & Mandra, V. (1996). Ultrafiltration as a tertiary treatment: Joint research program on membranes. Desalination, 106(1-3), 47-53. doi:10.1016/s0011-9164(96)00091-4Illueca-Muñoz, J., Mendoza-Roca, J. A., Iborra-Clar, A., Bes-Piá, A., Fajardo-Montañana, V., Martínez-Francisco, F. J., & Bernácer-Bonora, I. (2008). Study of different alternatives of tertiary treatments for wastewater reclamation to optimize the water quality for irrigation reuse. Desalination, 222(1-3), 222-229. doi:10.1016/j.desal.2007.01.157Muthukumaran, S., Jegatheesan, J. V., & Baskaran, K. (2013). Comparison of fouling mechanisms in low-pressure membrane (MF/UF) filtration of secondary effluent. Desalination and Water Treatment, 52(4-6), 650-662. doi:10.1080/19443994.2013.826324Delgado, S., Dı́az, F., Vera, L., Dı́az, R., & Elmaleh, S. (2004). Modelling hollow-fibre ultrafiltration of biologically treated wastewater with and without gas sparging. Journal of Membrane Science, 228(1), 55-63. doi:10.1016/j.memsci.2003.09.011Qin, J.-J., Oo, M. H., Lee, H., & Kolkman, R. (2004). Dead-end ultrafiltration for pretreatment of RO in reclamation of municipal wastewater effluent. Journal of Membrane Science, 243(1-2), 107-113. doi:10.1016/j.memsci.2004.06.010Konieczny, K. (1998). Disinfection of surface and ground waters with polymeric ultrafiltration membranes. Desalination, 119(1-3), 251-258. doi:10.1016/s0011-9164(98)00166-0Madaeni, S. S., Fane, A. G., & Grohmann, G. S. (1995). Virus removal from water and wastewater using membranes. Journal of Membrane Science, 102, 65-75. doi:10.1016/0376-7388(94)00252-tArnal Arnal, J. M., Sancho Fernández, M., Martín Verdú, G., & Lora García, J. (2001). Design of a membrane facility for water potabilization and its application to Third World countries. Desalination, 137(1-3), 63-69. doi:10.1016/s0011-9164(01)00205-3Arévalo, J., Garralón, G., Plaza, F., Moreno, B., Pérez, J., & Gómez, M. Á. (2009). Wastewater reuse after treatment by tertiary ultrafiltration and a membrane bioreactor (MBR): a comparative study. Desalination, 243(1-3), 32-41. doi:10.1016/j.desal.2008.04.013Katsoufidou, K., Yiantsios, S. G., & Karabelas, A. J. (2008). An experimental study of UF membrane fouling by humic acid and sodium alginate solutions: the effect of backwashing on flux recovery. Desalination, 220(1-3), 214-227. doi:10.1016/j.desal.2007.02.038Muthukumaran, S., Nguyen, D. A., & Baskaran, K. (2011). Performance evaluation of different ultrafiltration membranes for the reclamation and reuse of secondary effluent. Desalination, 279(1-3), 383-389. doi:10.1016/j.desal.2011.06.040Henderson, R. K., Subhi, N., Antony, A., Khan, S. J., Murphy, K. R., Leslie, G. L., … Le-Clech, P. (2011). Evaluation of effluent organic matter fouling in ultrafiltration treatment using advanced organic characterisation techniques. Journal of Membrane Science, 382(1-2), 50-59. doi:10.1016/j.memsci.2011.07.041Xiao, D., Li, W., Chou, S., Wang, R., & Tang, C. Y. (2012). A modeling investigation on optimizing the design of forward osmosis hollow fiber modules. Journal of Membrane Science, 392-393, 76-87. doi:10.1016/j.memsci.2011.12.006Kaya, Y., Barlas, H., & Arayici, S. (2011). Evaluation of fouling mechanisms in the nanofiltration of solutions with high anionic and nonionic surfactant contents using a resistance-in-series model. Journal of Membrane Science, 367(1-2), 45-54. doi:10.1016/j.memsci.2010.10.037Amin Saad, M. (2004). Early discovery of RO membrane fouling and real-time monitoring of plant performance for optimizing cost of water. Desalination, 165, 183-191. doi:10.1016/j.desal.2004.06.021Yu, C.-H., Fang, L.-C., Lateef, S. K., Wu, C.-H., & Lin, C.-F. (2010). Enzymatic treatment for controlling irreversible membrane fouling in cross-flow humic acid-fed ultrafiltration. Journal of Hazardous Materials, 177(1-3), 1153-1158. doi:10.1016/j.jhazmat.2010.01.022Gao, W., Liang, H., Ma, J., Han, M., Chen, Z., Han, Z., & Li, G. (2011). Membrane fouling control in ultrafiltration technology for drinking water production: A review. Desalination, 272(1-3), 1-8. doi:10.1016/j.desal.2011.01.051Jayalakshmi, A., Rajesh, S., & Mohan, D. (2012). Fouling propensity and separation efficiency of epoxidated polyethersulfone incorporated cellulose acetate ultrafiltration membrane in the retention of proteins. Applied Surface Science, 258(24), 9770-9781. doi:10.1016/j.apsusc.2012.06.028Qu, F., Liang, H., Wang, Z., Wang, H., Yu, H., & Li, G. (2012). Ultrafiltration membrane fouling by extracellular organic matters (EOM) of Microcystis aeruginosa in stationary phase: Influences of interfacial characteristics of foulants and fouling mechanisms. Water Research, 46(5), 1490-1500. doi:10.1016/j.watres.2011.11.051Wang, C., Li, Q., Tang, H., Yan, D., Zhou, W., Xing, J., & Wan, Y. (2012). Membrane fouling mechanism in ultrafiltration of succinic acid fermentation broth. Bioresource Technology, 116, 366-371. doi:10.1016/j.biortech.2012.03.099Zator, M., Ferrando, M., López, F., & Güell, C. (2007). Membrane fouling characterization by confocal microscopy during filtration of BSA/dextran mixtures. Journal of Membrane Science, 301(1-2), 57-66. doi:10.1016/j.memsci.2007.05.038Sheng, G.-P., Yu, H.-Q., & Li, X.-Y. (2010). Extracellular polymeric substances (EPS) of microbial aggregates in biological wastewater treatment systems: A review. Biotechnology Advances, 28(6), 882-894. doi:10.1016/j.biotechadv.2010.08.001Nguyen, S. T., & Roddick, F. A. (2011). Chemical cleaning of ultrafiltration membrane fouled by an activated sludge effluent. Desalination and Water Treatment, 34(1-3), 94-99. doi:10.5004/dwt.2011.2790Xiao, K., Wang, X., Huang, X., Waite, T. D., & Wen, X. (2009). Analysis of polysaccharide, protein and humic acid retention by microfiltration membranes using Thomas’ dynamic adsorption model. Journal of Membrane Science, 342(1-2), 22-34. doi:10.1016/j.memsci.2009.06.016Suh, C., Lee, S., & Cho, J. (2013). Investigation of the effects of membrane fouling control strategies with the integrated membrane bioreactor model. Journal of Membrane Science, 429, 268-281. doi:10.1016/j.memsci.2012.11.042Duclos-Orsello, C., Li, W., & Ho, C.-C. (2006). A three mechanism model to describe fouling of microfiltration membranes. Journal of Membrane Science, 280(1-2), 856-866. doi:10.1016/j.memsci.2006.03.005Davis, R. H. (1992). Modeling of Fouling of Crossflow Microfiltration Membranes. Separation and Purification Methods, 21(2), 75-126. doi:10.1080/03602549208021420Bhattacharjee, S., & Bhattacharya, P. K. (1992). Flux decline behaviour with low molecular weight solutes during ultrafiltration in an unstirred batch cell. Journal of Membrane Science, 72(2), 149-161. doi:10.1016/0376-7388(92)80195-pMallubhotla, H., & Belfort, G. (1996). Semiempirical Modeling of Cross-Flow Microfiltration with Periodic Reverse Filtration. Industrial & Engineering Chemistry Research, 35(9), 2920-2928. doi:10.1021/ie950719tSalahi, A., Abbasi, M., & Mohammadi, T. (2010). Permeate flux decline during UF of oily wastewater: Experimental and modeling. Desalination, 251(1-3), 153-160. doi:10.1016/j.desal.2009.08.006Field, R. W., Wu, D., Howell, J. A., & Gupta, B. B. (1995). Critical flux concept for microfiltration fouling. Journal of Membrane Science, 100(3), 259-272. doi:10.1016/0376-7388(94)00265-zVincent Vela, M. C., Álvarez Blanco, S., Lora García, J., & Bergantiños Rodríguez, E. (2009). Analysis of membrane pore blocking models adapted to crossflow ultrafiltration in the ultrafiltration of PEG. Chemical Engineering Journal, 149(1-3), 232-241. doi:10.1016/j.cej.2008.10.027Hasan, A., Peluso, C. R., Hull, T. S., Fieschko, J., & Chatterjee, S. G. (2013). A surface-renewal model of cross-flow microfiltration. Brazilian Journal of Chemical Engineering, 30(1), 167-186. doi:10.1590/s0104-66322013000100019ANG, W., & ELIMELECH, M. (2007). Protein (BSA) fouling of reverse osmosis membranes: Implications for wastewater reclamation. Journal of Membrane Science, 296(1-2), 83-92. doi:10.1016/j.memsci.2007.03.018Muthukumaran, S., & Baskaran, K. (2013). Comparison of the performance of ceramic microfiltration and ultrafiltration membranes in the reclamation and reuse of secondary wastewater. Desalination and Water Treatment, 52(4-6), 670-677. doi:10.1080/19443994.2013.826333Tasselli, F., Cassano, A., & Drioli, E. (2007). Ultrafiltration of kiwifruit juice using modified poly(ether ether ketone) hollow fibre membranes. Separation and Purification Technology, 57(1), 94-102. doi:10.1016/j.seppur.2007.03.007Chung, T.-S., Qin, J.-J., & Gu, J. (2000). Effect of shear rate within the spinneret on morphology, separation performance and mechanical properties of ultrafiltration polyethersulfone hollow fiber membranes. Chemical Engineering Science, 55(6), 1077-1091. doi:10.1016/s0009-2509(99)00371-1Swaminathan, T., Chaudhuri, M., & Sirkar, K. K. (1979). Anomalous flux behavior in initial time stirred protein ultrafiltration through partially permeable membranes. Journal of Applied Polymer Science, 24(6), 1581-1585. doi:10.1002/app.1979.070240620Ahmad, A. L., & Hairul, N. A. H. (2009). Protein–membrane interactions in forced-flow electrophoresis of protein solutions: Effect of initial pH and initial ionic strength. Separation and Purification Technology, 66(2), 273-278. doi:10.1016/j.seppur.2008.12.027Gu, Z. (2007). Across-sample Incomparability of R2s and Additional Evidence on Value Relevance Changes Over Time. Journal of Business Finance & Accounting, 34(7-8), 1073-1098. doi:10.1111/j.1468-5957.2007.02044.xVincent, T., Parodi, A., & Guibal, E. (2008). Pt recovery using Cyphos IL-101 immobilized in biopolymer capsules. Separation and Purification Technology, 62(2), 470-479. doi:10.1016/j.seppur.2008.02.025Daufin, G., Merin, U., Labbé, J. P., Quémerais, A., & Kerhervé, F. L. (1991). Cleaning of inorganic membranes after whey and milk ultrafiltration. Biotechnology and Bioengineering, 38(1), 82-89. doi:10.1002/bit.260380111Daufin, G., Merin, U., Kerherve, F.-L., Labbe, J.-P., Quemerais, A., & Bousser, C. (1992). Efficiency of cleaning agents for an inorganic membrane after milk ultrafiltration. Journal of Dairy Research, 59(1), 29-38. doi:10.1017/s0022029900030211Morão, A., Nunes, J. C., Sousa, F., Amorim, M. T. P. de, Escobar, I. C., & Queiroz, J. A. (2009). Development of a model for membrane filtration of long and flexible macromolecules: Application to predict dextran and linear DNA rejections in ultrafiltration. Journal of Membrane Science, 336(1-2), 61-70. doi:10.1016/j.memsci.2009.03.007Ouammou, M., Tijani, N., Calvo, J. I., Velasco, C., Martín, A., Martínez, F., … Hernández, A. (2007). Flux decay in protein microfiltration through charged membranes as a function of pH. Colloids and Surfaces A: Physicochemical and Engineering Aspects, 298(3), 267-273. doi:10.1016/j.colsurfa.2006.11.006Mohammadi, T., Kazemimoghadam, M., & Saadabadi, M. (2003). Modeling of membrane fouling and flux decline in reverse osmosis during separation of oil in water emulsions. Desalination, 157(1-3), 369-375. doi:10.1016/s0011-9164(03)00419-3Ng, C. Y., Mohammad, A. W., Ng, L. Y., & Jahim, J. M. (2014). Membrane fouling mechanisms during ultrafiltration of skimmed coconut milk. Journal of Food Engineering, 142, 190-200. doi:10.1016/j.jfoodeng.2014.06.005Mah, S.-K., Chuah, C.-K., Cathie Lee, W. P., & Chai, S.-P. (2012). Ultrafiltration of palm oil–oleic acid–glycerin solutions: Fouling mechanism identification, fouling mechanism analysis and membrane characterizations. Separation and Purification Technology, 98, 419-431. doi:10.1016/j.seppur.2012.07.020Said, M., Ahmad, A., Mohammad, A. W., Nor, M. T. M., & Sheikh Abdullah, S. R. (2015). Blocking mechanism of PES membrane during ultrafiltration of POME. Journal of Industrial and Engineering Chemistry, 21, 182-188. doi:10.1016/j.jiec.2014.02.023Amin, I. N. H. M., Mohammad, A. W., Markom, M., Peng, L. C., & Hilal, N. (2010). Analysis of deposition mechanism during ultrafiltration of glycerin-rich solutions. Desalination, 261(3), 313-320. doi:10.1016/j.desal.2010.04.01

    Macrofauna asociada al alga stypocaulon scoparium en el Estrecho de Gibraltar y comparación con el resto de la Península Ibérica

    Get PDF
    Se estudió la macrofauna asociada al alga Stypocaulon scoparium en el estrecho de Gibraltar y el resto de la península Ibérica. Se seleccionaron un total de 14 estaciones, 3 de ellas localizadas en el Estrecho y las 11 restantes distribuidas en las costas cantábricas, atlánticas y mediterráneas de la península Ibérica. En cada estación se midieron parámetros fisicoquímicos (temperatura, oxígeno disuelto, conductividad, pH y turbidez), se estimó la cobertura del alga y se recolectaron muestras de la misma en el submareal somero (1- 3 m de profundidad) mediante buceo en apnea. Se separaron e identificaron un total de 48.430 individuos pertenecientes a 16 grupos distintos de artrópodos, moluscos, anélidos y equinodermos. Atendiendo a los parámetros fisicoquímicos, los análisis de clasificación mostraron una mayor similaridad del área del Estrecho con las estaciones atlánticas. La costa mediterránea se caracterizó por una mayor temperatura y conductividad, mientras que la atlántica mostró valores más altos de oxígeno disuelto y turbidez, consecuencia un mayor oleaje. La cobertura del alga S. scoparium fue significativamente mayor en el Estrecho de Gibraltar que en las estaciones restantes y se registró una mayor diversidad de invertebrados asociados a este alga en el Estrecho que en otras zonas de la Península. Los crustáceos anfípodos fueron los más abundantes, seguidos de poliquetos y moluscos gasterópodos. El Análisis Canónico de Correspondencias (CCA) mostró que anfípodos, isópodos, quironómidos y crinoideos correlacionaron principalmente con la cobertura del alga, mientras que la abundancia de gasterópodos estuvo condicionada por la turbidez y la de los grupos restantes por la conductividad y temperatura principalmente. El estrecho d

    Ultra-deep 31.0-50.3 GHz spectral survey of IRC+10216

    Get PDF
    51 pags., 43 figs., 3 tabs.Context. The carbon-rich envelope of the asymptotic giant branch star CW Leo, IRC+10216, is one of the richest molecular sources in the sky. Available spectral surveys below 51 GHz are more than 25 years old, and new work is needed. Aims. Characterizing the rich molecular content of this source, specially for heavy species, requires carrying out very sensitive spectral surveys at low frequencies. In particular, we have achieved an rms in the range 0.2-0.6mK per MHz. Methods. Long Q band (31.0-50.3 GHz) single-dish integrations were carried out with the Yebes-40m telescope using specifically built receivers. The most recent line catalogs were used to identify the lines. Results. The data contain 652 spectral features, corresponding to 713 transitions from 81 species (we count the isomers, isotopologs, and ortho/para species separately). Only 57 unidentified lines remain with signal-to-noise ratios ≤3. Some new species and/or vibrational modes have been discovered for the first time with this survey. Conclusions. This IRC+10216 spectral survey is by far the most sensitive survey carried out to date in the Q band. It therefore provides the most complete view of IRC+10216 from 31.0 to 50.3 GHz, giving unique information about its molecular content, especially for heavy species. Rotational diagrams built from the data provide valuable information about the physical conditions and chemical content of this circumstellar envelope.We thank Ministerio de Ciencia e Innovación of Spain for funding support through projects PID2019-106110GB-I00, PID2019- 107115GB-C21/AEI/10.13039/501100011033, PID2019-106235GB-I00, and grant FJCI-2016-27983 for CB. We also thank ERC for funding through grant ERC-2013-Syg-610256-NANOCOSMOS. M.A. thanks MICIU for grant RyC2014-16277

    Patrones de abundancia de la macrofauna asociada a macroalgas marinas a largo de la Península Ibérica

    Get PDF
    macroalgae were studied on a spatial scale along the Iberian Peninsula. Nineteen stations and four dominant algae were selected (intertidal zone: Corallina elongata and Asparagopsis armata; subtidal zone: Stypocaulon scoparium and Cladostephus spongiosus). Five environmental factors were also considered (seawater temperature, conductivity, dissolved oxygen, turbidity and pH). The Atlantic coast was characterized by lower temperature and conductivity as well as higher values of oxygen and turbidity than the Mediterranean coast. A total of 106274 macrofaunal specimens were sorted and examined (68% arthropods, 27% molluscs, 4% annelids and 1% echinoderms). Crustaceans were the dominant group in all the macroalgae (ca. 80% in C. elongata and A. armata, ca. 50% in S. scoparium and C. spongiosus) followed by molluscs, which were more abundant in the subtidal algae (ca. 40%) than in intertidal ones (ca.10%). Abundance patterns of macrofauna along the Iberian Peninsula were similar in the four studied algae. Most of crustaceans belonged to the order Amphipoda, which showed high densities (>1000 ind/1000 ml algae) along the whole Peninsula; isopods showed the highest abundances in the Atlantic, while tanaids, cumaceans and decapods were more abundant in the Mediterranean. Among molluscs, gasteropods showed highest abundances along the Atlantic coasts, whereas bivalves showed higher densities along the MediterraneanSe llevó a cabo un estudio espacial de los patrones de abundancia y distribución de la macrofauna asociada a macroalgas a lo largo de la Península Ibérica. Se seleccionaron 19 estaciones y 4 algas dominantes (zona intermareal: Corallina elongata y Asparagopsis armata; zona submareal: Stypocaulon scoparium y Cladostephus spongiosus). Se consideraron también cinco variables ambientales (temperatura del agua, conductividad, oxígeno disuelto, turbidez y pH). La costa atlántica se caracterizó por valores más bajos de temperatura y conductividad, y más altos de oxígeno y turbidez. Se examinaron 106274 individuos de la macrofauna (68% artrópodos, 27% moluscos, 4% anélidos y 1% equinodermos). Los crustáceos fueron dominantes en todas las macroalgas (alrededor del 80% en C. elongata y A. armata, y en torno al 50% en S. scoparium y C. spongiosus), seguidos por los moluscos, que fueron más abundantes en el submareal (40%) que en el intermareal (10%). Los patrones de abundancia de la macrofauna a lo largo de la Península Ibérica fueron similares en las cuatro algas estudiadas. La mayoría de los crustáceos pertenecieron al orden Amphipoda, que mostró densidades muy altas (>1000 ind/1000 ml alga) en toda la Península; los isópodos mostraron las mayores densidades en el Atlántico, mientras que los tanaidáceos, cumáceos y decápodos fueron más abundantes en el Mediterráneo. Entre los moluscos, los gasterópodos mostraron abundancias mayores en el Atlántico, mientras que los bivalvos dominaron en el Mediterráneo. Teniendo en cuenta que todas las estaciones seleccionadas no tenían influencia antrópica importante, los patrones de abundancia obtenidos podrían explicarse en base a diferencias naturales en la temperatura del agua, oxígeno, conductividad y turbidez, existiendo un gradiente transicional entre taxones de aguas más cálidas (del norte de Africa y del Mediterráneo) y taxones de aguas más frías (del Mar del Norte y el Ártico)

    Use of the osmotic membrane bioreactor for the management of tannery wastewater using absorption liquid waste as draw solution

    Full text link
    [EN] The performance of an osmotic membrane bioreactor (OMBR) for treating tannery wastewater at laboratory scale has been evaluated in this study. The forward osmosis (FO) membrane tested was CTA-NW from HTI. As draw solution, actual waste water from an absorption column for ammonia separation, which consists mainly of ammonium sulphate was used. The study was focused on the salt reverse flux during the OMBR operation, membrane water flux, biomass characteristics and membrane fouling. Regarding membrane water flux change with the time, the measured values diminished from 3.44 to 0.72 LMH due to the membrane fouling and the salt accumulation in the biological reactor. The stable mixed liquor conductivity value at the end of the experiment was 29.8 mS·cm¿1. The chemical oxygen demand (COD) removal efficiencies were maintained near 80% until the first 50 days of operation, considering the soluble COD in the reactor instead of the COD in the membrane permeate for the performance calculation. Thence, COD removal efficiencies decreased progressively due to the accumulation of non degradable COD coming from the tannery wastewater. Concerning to the membrane fouling, FESEM/EDX analysis corroborated that organic fouling was predominant on the membrane active layer.This study was supported by the Spanish Ministry of Economy and Competitiveness through the project RTC-2015-3582-5-AR.Lujan Facundo, MJ.; Mendoza Roca, JA.; Soler Cabezas, JL.; Bes-Piá, M.; Vincent Vela, MC.; Pastor Alcañiz, L. (2019). Use of the osmotic membrane bioreactor for the management of tannery wastewater using absorption liquid waste as draw solution. Process Safety and Environmental Protection. 131:292-299. https://doi.org/10.1016/j.psep.2019.09.024S29229913

    Exploiting oxidative phosphorylation to promote the stem and immunoevasive properties of pancreatic cancer stem cells

    Get PDF
    Pancreatic ductal adenocarcinoma (PDAC), the fourth leading cause of cancer death, has a 5-year survival rate of approximately 7–9%. The ineffectiveness of anti-PDAC therapies is believed to be due to the existence of a subpopulation of tumor cells known as cancer stem cells (CSCs), which are functionally plastic, and have exclusive tumorigenic, chemoresistant and metastatic capacities. Herein, we describe a 2D in vitro system for long-term enrichment of pancreatic CSCs that is amenable to biological and CSC-specific studies. By changing the carbon source from glucose to galactose in vitro, we force PDAC cells to utilize OXPHOS, resulting in enrichment of CSCs defined by increased CSC biomarker and pluripotency gene expression, greater tumorigenic potential, induced but reversible quiescence, increased OXPHOS activity, enhanced invasiveness, and upregulated immune evasion properties. This CSC enrichment method can facilitate the discovery of new CSC-specific hallmarks for future development into targets for PDAC-based therapies
    corecore